人体-流動連成数値解析によるローヘッドダム における溺水危険性の基礎的検討

関谷 宏紀¹・中村 恭志²

 1学生会員 東京工業大学修士課程 環境社会理工学院 地球環境共創コース (〒226-8502神奈川県横浜市緑区長津田町 4259)
E-mail: sekiya.h.ad@m.titech.ac.jp

²正会員 東京工業大学准教授 融合理工学系 (〒226-8502 神奈川県横浜市緑区長津田町 4259) E-mail: tnakamur@tse.ens.titech.ac.jp (Corresponding Author)

河川での水難事故多発箇所である堰状構造物(ローヘッドダム)における流れへの転落事故を想定し, 堰越流の3次元流動計算と,人体各部位への流体力と浮力を考慮し落水者の姿勢変化と運動を計算した. 堰の上・下流水深を変化させ流動様式の異なる流れを再現し,人体は救命胴衣着用を想定してモデル化した.溺水原因とされる鉛直循環流は,従来注目されていた submerged jump に加え wave jump でも生じ,水 面に加え河床付近にも形成された. submerged jump の鉛直循環流への捕捉は長時間になる傾向があった. wave jump での捕捉は短時間となるが, submerged jump よりも人体が激しく煽られた. この場合,たとえ 救命胴衣を着用していても水面上に浮き続けることができないケースも確認された.

Key Words: low-head dam, drowning, life jacket, recirculation, multiphase flow analysis

1. 序論

我が国では毎年 1,000 件以上の水難事故が発生し,死 者・行方不明者数は毎年 700 人に上る¹⁾. 死者・行方不 明者の発生水域別内訳では,河川は約 32 %と大きな部 分を占めるなど,河川における水難事故の対策の高度化 が求められている²⁾.河川における事故の特徴として, 複雑な流れが生じる河川構造物付近で多発していること が挙げられる.中でも比較的低い堰高で河道を横断して 設置される,頭首工など堰状構造物(以降,ローヘッド ダム) は水難事故が多発する箇所として, drowning machines と呼ばれ恐れられている³⁾.

通常,ローヘッドダム下流には越流水の減勢工として バッフルブロックやエンドシル等が設置され,堰下流に は跳水が形成される.跳水の形態や発生位置など堰下流 の流動様式は水槽実験等により調べられ,水深など水理 学的条件に応じ,堰下流の流動様式が変化することが報 告されている⁴⁾.堰下流の流動様式のうち,submerged jumpでは堰直下に鉛直循環流が形成されるとされてい る.堰直下に鉛直循環流が存在する場合の危険性は過去 の水難事故事例をもとに経験的に議論されており,循環 流内の水難者は水面付近の逆流と底層付近の順流で上流

と下流へ交互に押し流されるため循環流からの脱出は困 難であり、溺水リスクが最も高まるとされてきた. その ため、従来、鉛直循環流を伴う submerged jump のみが危 険なものとされ、ローヘッドダムのその他の流動様式に ついての溺水リスクは軽視されてきた傾向にある.また, 上記のように水理学的な研究は見られるものの、流動に 呑まれた被害者に着目し、その体が流れの中でどのよう に運動するのかを力学的視点から調べた研究は見られず, ローヘッドダムにおける溺水の危険性は十分評価されて いない.本研究では、流動と人体の運動を連立し、両者 を同時に解析可能な数値モデルをローヘッドダムに適用 し、ローヘッドダム下流に生じる一連の流動様式を再現 するとともに、それぞれの流動様式における流水中の人 体の運動を解析して溺水の危険性を評価することとした. また、近年水難事故対策として救命胴衣着用の奨励が行 われているが、ローヘッドダムでその有効性を確認する ことは今後の着用の奨励活動に重要な情報となるはずで ある. そこで、人体は救命胴衣の着用を想定したモデル 化を行うこととした. また,幾つかの解析ケースでは, 救命胴衣の非着用を想定した人体モデルでの解析と比較 し、救命胴衣の着用がローヘッドダムでの溺水過程に及 ぼす影響を検討した.

2. 計算条件

(1) 数値解析モデル

人体一流動連成数値モデルである Drowning hUman Model (DRUM)を用いてシミュレーションを行った⁵⁰. 自 由水面を伴う三次元流動を計算格子を用いた混相流解析 で計算する一方,人体の各部位を剛体とみなし,運動方 程式に従いそれらの並進・回転運動を計算することで人 体の姿勢の変化と運動を計算する. 各時間ステップでは, 混相流解析で計算される圧力を人体の各部位の領域で積 分し,各部位に作用する流体力を考慮した人体の姿勢変 化と運動が計算される. 同時に,各時間ステップにおい て,人体各部位の速度は計算格子へ上書きされ,それを 境界条件として流速の時間発展を計算することにより人 体の存在と運動の影響が流動へ反映される⁹.

計算格子にはスタガード配置の直交格子を用い,混相 流解析では Constrained Interpolation Profile-Combined Unified Procedure (CIP-CUP)法が用いられる⁷⁾.本研究では水面位 置の追跡をタンジェント変換⁸を用いて行うこととし, 跳水に伴う気泡連行は考慮しないこととした.一方,人 体は,図-1のように複数の部位と,各部位を接続する関 節でモデル化される⁹⁾.多くの場合,水難事故の被害者 はパニックに陥り泳動など合理的な運動を行うことは難 しいとされている.さらに,最も危険性が高くなるであ ろう意識消失状態を想定して溺水危険性を評価するため, 本研究では関節は能動的に動作せず,接続する部位の運 動に応じ,関節それぞれの可動範囲で自由に曲がると仮 定した.関節の可動範囲は成人男性の代表値とした¹⁰⁾.

(2) 計算条件

計算領域を図-2に示す. 主流(x軸)方向 32m,横断(y軸) 方向 4m の矩形水路を想定し、上流端から 5m 下流に高 さ2.653mの固定堰を配置し、下流端から5m上流には高 さ 0.5m の減勢工を設置した. 固定堰と減勢工の形状及 び配置は、水難事故が多発するK県S河の頭首工と同じ とした.水路側岸の境界条件はスリップ境界条件とした. 上流の境界では、流速は自由境界、水位は初期水位に固 定する境界条件とした. 下流は流速と水位ともに自由境 界条件とした. x軸方向の格子間隔は不等間隔とし, 堰 下流の鉛直循環流が発生する範囲は細かい格子幅(Δx= 3cm)とする一方、それ以外の領域は上下流端に向けて一 定割合で格子幅を広げた. y 軸及び z 軸方向の格子幅は 等間隔とした($\Delta y=10$ cm, $\Delta z=7.5$ cm). モデルとした頭首 工付近の水位記録から平水時及び洪水時に想定される範 囲を検討し、計算対象とする水深を決定した. 初期水深 として、堰より上流側は3.0、3.5、4.0、4.5 mの4ケース、 堰より下流側は0.5, 1.0, 1.5, 2.0, 2.5 mの5ケースを想 定し、上流・下流の水深の組み合わせ全て(計20ケース)

図-1人体モデル.黒字は部位,青字は関節を表す.

図-2計算領域の模式図

について計算を行った. 初期流速は鉛直・横断方向とも に零とし、主流方向は堰頂で限界水深となる条件から水 深方向に一様な流速を設定した.人体は成人男性を想定 した. 産業総合技術研究所のデータベース (データ ID F020, 23歳, 身長 168 cm, 体重 61.4 kg) ¹¹から形状を取 得し、19の部位と18の関節によりモデル化した(図-1). また、救命胴衣には浮力7.5kgfの標準的なものを想定し、 水中で同じ浮力が胸部に加わるよう、胸部内の密度を一 様に低下させることでモデル化をおこなった、これによ り、人体全身の水中浮力は 6.22 kgf となる. 救命胴衣を 着用しない場合の全身の水中浮力は-1.28kgf である.計 算開始後に助走計算を行い、流れ場が安定してから堰下 流側で人体を水面上方から水中へ自由落下させた. 人体 が落水してから速やかに流下した場合、計算領域下流端 に達する時間は 30 秒程度であったことから、計算時間 は人体の投下から35秒間とした.

3. 計算結果

(1) 流動様式と鉛直循環流の形成

図-3に本研究で計算された代表的な流動様式を示す. 既往研究によれば,堰下流における流動様式は主に surface flow, submerged jump, swept-out jump に分類され,堰 上下流の水位差 ΔH の増加に伴い後者の流動様式が出現 しやすいとされている⁴⁾.本研究でも ΔH の変化に対し て同様の流動様式の遷移が見られた.これらに加え,本 研究では図-3(c)に示すような堰直下の底層に循環流を伴 う流動様式が見られた.この流動様式は ΔH が大きい場 合に段落ち部に発生する跳水で見られるもので,wave jump と呼ばれる¹²⁾.既往研究では主流方向に厚みの薄い 刃型堰を主に想定していた一方,本研究では実際の頭首 工を模擬した台形形状の堰を用いたため,堰形状の差異

により wave jump の流動様式が得られたと考えられる. 小さいΔHでは越流水は遅く,下流側では底層に潜りこ めず、水面付近を流下する surface flow を形成した(図-3(a)). △H が増加すると越流水は速くなり、下流側で底層に潜 り込み、堰直下の水面付近に鉛直循環流を形成する submerged jump となった(図-3(b)). さらに ΔH が大きい場 合には、高速な越流水は下流側で底面で何度も反射しつ つ主流域が上下に蛇行する wave jump となり(図-3(c)),特 に下流側水深が浅い場合には、高速な越流水が下流側の 水を押し流す swept-out jump の流動様式が見られた(図-3(d)). 表-1 に計算条件ごとの流動様式を各カラムの色で 示す. 流動様式ごとに鉛直循環流形成の有無を確認した ところ, surface flow と swept-out jump では鉛直循環流は形 成されない一方、図-3(b)と(c)に示すように、従来から危 険だと注目されてきた submerged jump に加え, wave jump でも強い鉛直循環流の形成が確認された. 図4 は submerged jump と wave jump の循環流の模式図を示してお り、水面付近に生じる循環流(水面循環流)に加え、底層 でも循環流(河床循環流)が形成されていた

表-1 流動様式と鉛直循環流への捕捉の有無.各カラムの背景 色は流動様式を表す.●と■はそれぞれ水面循環流と河 床循環流への人体の捕捉の有無を表し、数字は捕捉され た秒数、×は計算終了まで捕捉されたことを表す.

(2) 人体の鉛直循環流への捕捉傾向

ローヘッドダムでは鉛直循環流の存在が溺水危険性を 高めているとされる.そこで、人体の姿勢・運動の計算 結果から、それぞれの流動様式ごとに鉛直循環流の内部 に人体が捕捉されるかどうかを確認した.鉛直循環流を 形成しない surface flow と swept-out jump では、人体は水中 に落下後すみやかに浮上し、水面上をそのまま下流へと 流下していった.一方、鉛直循環流が形成される submerged jump 及び wave jump では、両方で循環流への捕 捉が見られた.表-1 では水面循環流に捕捉されたケース を●で、河床循環流に捕捉されたものを■で示している. 各印の下の数字は捕捉された秒数で、×は計算終了まで 脱出できなかったことを示している.表からは以下の傾 向が確認される.

- ・submerged jump の全てのケースで人体は水面循環流に 捕捉され,下流側水深が浅い(0.5m)場合を除き,捕捉 は長時間となり計算終了まで継続する.
- ・wave jump の場合も循環流へ捕捉され,水面循環流に 加え河床循環流に捕捉されることもある.ただし,上 流水深 4.0m の場合のように,下流水深 1.5m 及び 2.5m で捕捉されるが,その中間の 2.0m では捕捉されない など,捕捉されるケースと捕捉されないケースの間に は,水深による系統的な傾向は見られない.また,水 面循環流と河床循環流のいずれでも捕捉は数十秒間以 下で終了する.

(3) 流動場に基づく人体の鉛直循環流への捕捉傾向の 考察

a) submerged jump

図-5 に submerged jump で下流側水深が比較的深いケース(上流水深 3.5m, 下流水深 2.0m)の水面循環流への捕捉の様子を示す.主流方向流速をカラーコンターで示し, 青色は逆流方向,赤色は順流方向の領域を示す.人体は

図-6 submerged jumpの水面循環流への捕捉(下流水深が浅い場合).全体図(a)の破線の領域を(b)~(d)は拡大している.

黄色で示し、黒字線で人体全身の重心位置の軌跡を表し ている. t'は人体の落下開始からの時間である. 水面落 下後,救命胴衣の浮力により水面付近に浮上するが(図-5(b)),循環流による水面付近の逆流により堰方向へ押し 流されて行く(図-5(c)). 逆流の流速は青年男子の平均泳 速(1.3m/s程度¹³)よりも速く、逆流に逆らいつつ被害者が 泳いで循環流から脱出することは困難であると考えられ る. 逆流により堰直下まで到達した後は、堰面上を流下 する越流水と逆流とに挟まれるように、水面上に浮上し たまま, 堰直下で移動しなくなる(図-5(d)). この時, 人 体の全身は逆流となっている水面付近に含まれ、底層付 近を流れる高速な順流による連行は見られなかった. 救 命胴衣非着用を想定した人体モデルの計算結果を図-5(e) ~(g)に示す.水中へ落下後,①負の浮力を持つ人体は水 面に浮上し続けることができず沈み(図-5(e)), ②順流の 流脈に体の一部が侵入すると人体は水中で下流へ連行さ れ(図-5(f)), ③水面まで連行された人体は水面循環流の 強い逆流に捕捉され,沈みつつ再度上流へ運ばれる(図-5(g)). 以上の①~③の過程は何度も繰り返され, 被害者 は順流による水中への連行を何度も被ることとなる. 一 方,救命胴衣を着用した場合(図-5(b)~(d)),循環流から の脱出は困難であるものの、水面上に人体は浮上し続け ており、救命胴衣を着用することは水面循環流による溺 水リスクを低下させると考えられる.一方,図-6に示す ように、同じ submerged jump でも下流側水深が浅い場合 (上流水深 3.5m, 下流水深 0.5m)には,人体は水面に浮上 し続ける一方,浅い水深のため脚部など体の一部が常に 底層の順流域に侵入していた.その結果,「順流域の連 行」と「水面付近の逆流」により,人体は上流と下流へ の移動を不規則に生じるとももに(図-6(b),(c)),順流域へ の体の侵入が大きくなったタイミング(図-6(d))で,人体 は下流へ強く連行され,循環流外部へと運ばれることが 確認された.以上のように,下流側の水深により底層の 順流による連行の有無が変化することが,同じ submerged jump でも下流側水深が浅い場合には水面循環 流への捕捉は短時間で,下流側水深が深い場合には長時 間となる原因と考えられる.

b) wave jump

図-7に wave jump で水面循環流に捕捉されたケース(上 流水深 4.0m,下流水深 2.5m)を示す.人体の水面への投 入は堰直下の下流としたが(図-7(a)), wave jump では堰直 下に水面循環流は形成されないことから,堰面上を流れ 降った越流水の強い順流に人体は投入され,そのまま下 流へ運ばれることになる.その後,鉛直循環流に捕捉さ れたケースでは,順流の流脈中央から人体がはずれ,流 脈外部に突出した脚部等が流脈に隣接する鉛直循環流に 引っかかることで,順流の流脈から引き出され鉛直循環 流へ捕捉されていた(図-7(b)).このように,順流で運ば れる際の人体の姿勢・位置の微妙な差異が捕捉の有無を 決定することが,wave jump では水深による系統的な傾

図-8 wave jump の河床循環流への捕捉. 全体図(a)の破線の領域を(b)~(d)は拡大している. (b)~(d)は救命胴衣着用, (e)~(g)は救命胴衣非着用の場合を示す.

向が見られない原因と考えられる. submerged jump では 水面循環流の大きさは安定していたが, wave jump では 順流の流脈が上下に揺動して水面循環流の大きさは常に 変化していた(図-7(b), (c), (d)). 揺動する順流に人体の一 部が頻繁に接触を繰り返すため、人体は循環流内部で激 しく振り回され水面上に浮かび続けることができない. このことから、水面循環流へ捕捉された後の溺水に至る 危険性は、水面に比較的安定して浮かび続けられる submerged jump に比べ, wave jump の方が高いと考えられ る. その一方, 順流へ頻繁に接触するため, 順流による 下流への連行が強くなったタイミングで、人体は速やか に循環流の外へ運び出された(図-7(d)). このことが, wave jump では捕捉される時間は数十秒以下と短時間と なる原因と考えられる. 図-8 は wave jump で河床循環流 へ捕捉されたケース(上流水深 4.0m, 下流水深 1.0m)を示 している. 河床循環流は水面循環流に比べ大きく, 循環 流内部に全身を含まれた人体は循環流の内部を大きな軌 跡で回転する(図-8(b)). しかし、人体は浮力により回転 しつつも浮上を続けるため、上方を流れる順流の流脈に 達した後(図-8(c)),順流に連行され循環流の外部へ運び 出された(図-8(d)). 救命胴衣非着用を想定した人体モデ ルの計算結果を図-8(e)~(g)に示す.河床循環流に捕捉された人体は、救命胴衣着用の場合と同様に循環流内部を 大きな軌跡で回転するものの(図-8(e))、人体は負の浮力 により河床へ沈降し、上方の順流域に触れることはなく (図-8(f))、計算終了まで河床循環流内部に捕捉され続け た(図-8(g)).以上のように救命胴衣の着用は水面への浮 上に加え、河床循環流からの被害者の早期の脱出を可能 とすることから、救命胴衣の着用は河床循環流による溺 水リスクを低下させると考えられる.

4. 結論

本研究で得られた主要な知見と今後の課題は以下の通 りである.

- 流動様式の中で submerged jump に加え, wave jump にお いても鉛直循環流が形成され,水面付近と河床付近に それぞれ鉛直循環流が形成される.循環流に捕捉され た場合は泳動により脱出することは困難と考えられる.
- ・鉛直循環流は形成されない surface flow と swept-out jump では、落水者は速やかに下流へ押し流される.

- submerged jump では、水面循環流へ落水者が捕捉され、 河床循環流へは捕捉されない、下流水深が深い場合、 逆流で堰直下に押しつけられ、長時間にわたり水面循 環流に捕捉される.一方、下流水深が浅い場合、人体の順流への連行により、循環流内への捕捉は数十秒以 下と比較的短くなる.
- ・wave jump では、落水者は水面循環流に加え、河床循環流にも捕捉される.また、捕捉されず下流へ流される場合もある.水面循環流に捕捉された人体は激しく振り回され、submerged jumpよりも溺水に至る危険性が高い.水面循環流と河床循環流いずれでも、循環流内への捕捉は数十秒以下と比較的短い.
- ・救命胴衣非着用の解析と比較した結果,救命胴衣の着用は submerged jump の水面循環流における水面への浮上の継続,ならびに wave jump の河床循環流からの速やかな脱出に有効であることが確認された.救命胴衣着用はローヘッドダムにおける溺水リスク低減に役立つと考えられる.
- 本研究では鉛直循環流への捕捉に注目した.しかし、 実際の溺水事故では呼吸の確保が重要であり、顔の水 面上への露出に着目して、危険性評価を行う必要がある.救命胴衣の形状により水中での人体の姿勢は変化 すると考えられることから、今後は様々な形状の救命 胴衣に対し、呼吸確保の観点から危険性評価を引き続 き進める予定である.

参考文献

- 1) 警察庁生活安全局生活安全企画課:令和元年におけ る水難の概況,警察庁,2020.
- 河川環境管理財団河川環境総合研究所:河川環境総合研究報告書 No.14,河川環境管理財団,2008.
- 3) Borland-Coogan Associates .: The Drowning Machine,

Filmspace Productions, 1980.

- Leutheusser, H. J. and Birk, W.M.: Drownproofing of Low Overflow Structures, *Journal of Hydraulic Engineering*, *ASCE*, Vol.117, No.2, 1991.
- 5) 中村恭志,安嶋大稀,相澤敦武,井上徹教:人体流 動連成解析に基づく溺水数値解析シミュレーション モデルの開発,土木学会論文集 B1(水工学), Vol.73, pp.I_601-I_606, 2017.
- Ajima, D., Nakamura, T., Araki, T., Inoue, T. and Kurisu, A.: Development of a coupled human fluid numerical model for the evaluation of tsunami drowning hazards, *Journal of Biomechanical Science and Engineering*, Vol. 14, pp.18-00321, 2019.
- Yabe, T. and Wang, P.Y.: Unified numerical procedure for compressible and incompressible fluid, *Journal of the Physical Society of Japan*, Vol.60, pp.2105-2108, 1991.
- Yabe, T. and Xiao, F.: Description of Complex and Sharp Interface during Shock Wave Interaction with Liquid Drop, *Journal of the Physical Society of Japan*, Vol. 62, pp.2537-2540, 1993.
- 9) 藤井範久,阿江道良,宮下憲:剛体リンクモデルによる身体運動シミュレーションシステムの構築とスポーツ運動への応用,筑波大学体育科学系紀要, Vol.18, pp.117-126,1995.
- 中村隆一,齋藤宏,長崎浩:基礎運動学第6版,医 歯薬出版,2016.
- 河内まき子,持丸正明: AIST/HQL 人体寸法・形状デ ータベース 2003,産業技術総合研究所 H18PRO-503, 2006.
- 12) Ohtsu, I. Yasuda, Y.: Transition from supercritical to subcritical flow at an abrupt drop, *Journal of Hydraulic Research, IAHR*, Vol.29, No.2, pp.309-328, 1991.
- 鎌田安久,栗林徹,山下芳男,北田雅子,"水泳に おけるプルの能力と泳力",岩手大学教育学部研究 年報, Vol.52, No.2, pp.89-102, 1995.

(Received May 31, 2022) (Accepted September 1, 2022)

BASIC STUDY ON DROWNING RISK AT A LOW-HEAD DAM BY USING A COUPLED HUMAN FLOW SIMULATION

Hiroki SEKIYA, Takashi NAKAMURA

Numerical analysis of a water accident at a low-head dam was conducted. In assuming a human-body falling to a overflow weir, posture change and movement of human-body were simulated by being combined with a solution of 3D multi-phase flow. From a series of simulations conducted with different combinations of upstream depth and downstream depth, it was found that "wave jump" regime has vertical circulational flow in addition to "submerged jump" regime, which has been regarded as danger. While a human-body is trapped in a long time in a circulation flow of "submerged jump" regime, trapping in "wave jump" regime tends to be shorter. Because a human-body is strongly shaken in "wave jump" regime, "wave jump" regime seems to be more danger than "submerged jump" regime. A human-body was modeled to have the bouyancy that is caused by a standard lifejacket. Simulation results show that while the wearing of lifejacket might contributes to the prevention of drowning at low-head dam, the buoyancy of a standard lifejacket might be insufficient to keep a human-body floating on a water surface in the cases trapped in a circulation flow of "wave jump" regime.